Webb Captures A Cosmic Tarantula


 Thousands of never-before-seen young stars are spotted in a stellar nursery called 30 Doradus, captured by the NASA/ESA/CSA James Webb Space Telescope. Nicknamed the Tarantula Nebula for the appearance of its dusty filaments in previous telescope images, the nebula has long been a favourite for astronomers studying star formation. In addition to young stars, Webb reveals distant background galaxies, as well as the detailed structure and composition of the nebula’s gas and dust.


At only 161,000 light-years away in the Large Magellanic Cloud galaxy, the Tarantula Nebula is the largest and brightest star-forming region in the Local Group, the galaxies nearest to our Milky Way. It is home to the hottest, most massive stars known. Astronomers focused three of Webb’s high-resolution infrared instruments on the Tarantula. Viewed with Webb’s Near-Infrared Camera (NIRCam), the region resembles a burrowing tarantula’s home, lined with its silk. The nebula’s cavity centred in the NIRCam image has been hollowed out by blistering radiation from a cluster of massive young stars, which sparkle pale blue in the image. Only the densest surrounding areas of the nebula resist erosion by these stars’ powerful stellar winds, forming pillars that appear to point back toward the cluster. These pillars contain forming protostars, which will eventually emerge from their dusty cocoons and take their turn shaping the nebula.


Webb’s Near-Infrared Spectrograph (NIRSpec) caught one very young star doing just that. Astronomers previously thought this star might be a bit older and already in the process of clearing out a bubble around itself. However, NIRSpec showed that the star was only just beginning to emerge from its pillar and still maintained an insulating cloud of dust around itself. Without Webb’s high-resolution spectra at infrared wavelengths, this episode of star formation-in-action could not have been revealed.


The region takes on a different appearance when viewed in the longer infrared wavelengths detected by Webb’s Mid-infrared Instrument (MIRI). The hot stars fade, and the cooler gas and dust glow. Within the stellar nursery clouds, points of light indicate embedded protostars, still gaining mass. While shorter wavelengths of light are absorbed or scattered by dust grains in the nebula, and therefore never reach Webb to be detected, longer mid-infrared wavelengths penetrate that dust, ultimately revealing a previously unseen cosmic environment. 


One of the reasons the Tarantula Nebula is interesting to astronomers is that the nebula has a similar type of chemical composition as the gigantic star-forming regions observed at the universe’s “cosmic noon,” when the cosmos was only a few billion years old and star formation was at its peak. Star-forming regions in our Milky Way galaxy are not producing stars at the same furious rate as the Tarantula Nebula, and have a different chemical composition. This makes the Tarantula the closest (i.e., easiest to see in detail) example of what was happening in the universe as it reached its brilliant high noon. Webb will provide astronomers the opportunity to compare and contrast observations of star formation in the Tarantula Nebula with the telescope’s deep observations of distant galaxies from the actual era of cosmic noon.


Despite humanity’s thousands of years of stargazing, the star formation process still holds many mysteries – many of them due to our previous inability to get crisp images of what was happening behind the thick clouds of stellar nurseries. Webb has already begun revealing a universe never seen before, and is only getting started on rewriting the stellar creation story.  


Tarantula Nebula (NIRCam Image)


In this mosaic image stretching 340 light-years across, Webb’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light, including tens of thousands of never-before-seen young stars that were previously shrouded in cosmic dust. The most active region appears to sparkle with massive young stars, appearing pale blue. Scattered among them are still-embedded stars, appearing red, yet to emerge from the dusty cocoon of the nebula. NIRCam is able to detect these dust-enshrouded stars thanks to its unprecedented resolution at near-infrared wavelengths.

To the upper left of the cluster of young stars, and the top of the nebula’s cavity, an older star prominently displays NIRCam’s distinctive eight diffraction spikes, an artefact of the telescope’s structure. Following the top central spike of this star upward, it almost points to a distinctive bubble in the cloud. Young stars still surrounded by dusty material are blowing this bubble, beginning to carve out their own cavity. Astronomers used two of Webb’s spectrographs to take a closer look at this region and determine the chemical makeup of the star and its surrounding gas. This spectral information will tell astronomers about the age of the nebula and how many generations of star birth it has seen.

Farther from the core region of hot young stars, cooler gas takes on a rust colour, telling astronomers that the nebula is rich with complex hydrocarbons. This dense gas is the material that will form future stars. As winds from the massive stars sweep away gas and dust, some of it will pile up and, with gravity’s help, form new stars.

Credit:

NASA, ESA, CSA, and STScI

Tarantula Nebula (MIRI Image)


At the longer wavelengths of light captured by its Mid-Infrared Instrument (MIRI), Webb focuses on the area surrounding the central star cluster and unveils a very different view of the Tarantula Nebula. In this light, the young hot stars of the cluster fade in brilliance, and glowing gas and dust come forward. Abundant hydrocarbons light up the surfaces of the dust clouds, shown in blue and purple. Much of the nebula takes on a more ghostly, diffuse appearance because mid-infrared light is able to show more of what is happening deeper inside the clouds. Still-embedded protostars pop into view within their dusty cocoons, including a bright group at the very top edge of the image, left of centre.

Other areas appear dark, like in the lower-right corner of the image. This indicates the densest areas of dust in the nebula, that even mid-infrared wavelengths cannot penetrate. These could be the sites of future, or current, star formation.

MIRI was contributed by ESA and NASA, with the instrument designed and built by a consortium of nationally funded European Institutes (The MIRI European Consortium) in partnership with JPL and the University of Arizona.

Credit:

 NASA, ESA, CSA, and STScI

Two Views of the Tarantula Nebula (NIRCam and MIRI images)


A side-by-side display of the same region of the Tarantula Nebula brings out the distinctions between Webb’s near-infrared (closer to visible red, left) and mid-infrared (further from visible red, right) images. Each portion of the electromagnetic spectrum reveals and conceals different features, making data in different wavelengths valuable to astronomers for understanding the physics taking place.

The image captured by Webb’s Near-Infrared Camera (NIRCam, left) features bright, hot features, like the sparkling cluster of massive young stars, and the bright star to their upper left, featuring Webb’s distinctive diffraction spikes. Young, emerging stars shine blue, while scattered red points indicate stars that are still enshrouded in dust. Structure in the nebula, carved by the stellar winds of the massive young stars, is intricately detailed.

In the view from Webb’s Mid-Infrared Instrument (MIRI), the hot young stars fade, and cooler gas takes the spotlight. Much of the nebula takes on a ghostly appearance in the mid-infrared, because these longer wavelengths of light are able to penetrate the dust clouds and reach Webb. Previously hidden bubbles and dust-embedded stars emerge. A particularly prominent, spherically shaped bubble – being blown out by a newborn star – appears in the MIRI image just to the right of the now-darkened central star cluster.

Another difference between the two images is the appearance of the bright, lone star at the top of the nebula’s cavity. In the MIRI image (right) the star is fainter relative to the surrounding nebula, so the glare and the distortion of Webb’s diffraction spikes are much less prominent.

In the midst of the central cluster of young stars, one dense gas clump is clearly visible in both images – it is one of the last, dense remnants of the nebula that the young cluster stars’ stellar winds have not yet eroded away.

NIRCam was built by a team at the University of Arizona and Lockheed Martin’s Advanced Technology Center.

MIRI was contributed by ESA and NASA, with the instrument designed and built by a consortium of nationally funded European Institutes (The MIRI European Consortium) in partnership with JPL and the University of Arizona.

Credit:

NASA, ESA, CSA, and STScI

Tarantula Nebula (NIRSpec IFU)


Webb’s Near-Infrared Spectrograph (NIRSpec) reveals what is really going on in an intriguing region of the Tarantula Nebula. Astronomers focused the powerful instrument on what looked like a small bubble feature in the image from Webb’s Near-Infrared Camera (NIRCam). However, the spectra reveal a very different picture from a young star blowing a bubble in its surrounding gas.

The signature of atomic hydrogen, shown in blue, shows up in the star itself but not immediately surrounding it. Instead, it appears outside the “bubble,” which spectra show is actually “filled” with molecular hydrogen (green) and complex hydrocarbons (red). This indicates that the bubble is actually the top of a dense pillar of dust and gas that is being blasted by radiation from the cluster of massive young stars to its lower right (see the full NIRCam image). It does not appear as pillar-like as some other structures in the nebula because there is not much colour contrast with the area surrounding it.

The harsh stellar wind from the massive young stars in the nebula is breaking apart molecules outside the pillar, but inside they are preserved, forming a cushy cocoon for the star. This star is still too young to be clearing out its surroundings by blowing bubbles – NIRSpec has captured it just beginning to emerge from the protective cloud from which it was formed. Without Webb’s resolution at infrared wavelengths, the discovery of this star birth in action would not have been possible.

NIRSpec was built for the European Space Agency (ESA) by a consortium of European companies led by Airbus Defence and Space (ADS) with NASA’s Goddard Space Flight Center providing its detector and micro-shutter subsystems.

Credit:

 NASA, ESA, CSA, and STScI

Tarantula Nebula (NIRCam Image - Annotated)


In this mosaic image stretching 340 light-years across, Webb’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light, including tens of thousands of never-before-seen young stars that were previously shrouded in cosmic dust. The most active region appears to sparkle with massive young stars, appearing pale blue. Scattered among them are still-embedded stars, appearing red, yet to emerge from the dusty cocoon of the nebula. NIRCam is able to detect these dust-enshrouded stars thanks to its unprecedented resolution at near-infrared wavelengths.

To the upper left of the cluster of young stars, and the top of the nebula’s cavity, an older star prominently displays NIRCam’s distinctive eight diffraction spikes, an artefact of the telescope’s structure. Following the top central spike of this star upward, it almost points to a distinctive bubble in the cloud. Young stars still surrounded by dusty material are blowing this bubble, beginning to carve out their own cavity. Astronomers used two of Webb’s spectrographs to take a closer look at this region and determine the chemical makeup of the star and its surrounding gas. This spectral information will tell astronomers about the age of the nebula and how many generations of star birth it has seen.

Farther from the core region of hot young stars, cooler gas takes on a rust colour, telling astronomers that the nebula is rich with complex hydrocarbons. This dense gas is the material that will form future stars. As winds from the massive stars sweep away gas and dust, some of it will pile up and, with gravity’s help, form new stars.

Credit:

NASA, ESA, CSA, and STScI

Tarantula Nebula (MIRI Image - Annotated)


At the longer wavelengths of light captured by its Mid-Infrared Instrument (MIRI), Webb focuses on the area surrounding the central star cluster and unveils a very different view of the Tarantula Nebula. In this light, the young hot stars of the cluster fade in brilliance, and glowing gas and dust come forward. Abundant hydrocarbons light up the surfaces of the dust clouds, shown in blue and purple. Much of the nebula takes on a more ghostly, diffuse appearance because mid-infrared light is able to show more of what is happening deeper inside the clouds. Still-embedded protostars pop into view within their dusty cocoons, including a bright group at the very top edge of the image, left of centre.

Other areas appear dark, like in the lower-right corner of the image. This indicates the densest areas of dust in the nebula, that even mid-infrared wavelengths cannot penetrate. These could be the sites of future, or current, star formation.

MIRI was contributed by ESA and NASA, with the instrument designed and built by a consortium of nationally funded European Institutes (The MIRI European Consortium) in partnership with JPL and the University of Arizona.

Credit:

NASA, ESA, CSA, and STScI


VIDEOS

Space Sparks Episode 5: Webb Captures A Cosmic Tarantula


Watch this special Space Sparks episode to learn more about the stellar nursery called 30 Doradus, as captured by the NASA/ESA/CSA James Webb Space Telescope.

Credit:

Directed by: Bethany Downer and Nico Bartmann
Editing: Nico Bartmann
Web and technical support: Enciso Systems
Written by: Bethany Downer
Music: Stellardrone - The Belt of Orion
Footage and photos: NASA, ESA, CSA, and STScI, NASA's Goddard Space Flight Center Conceptual Image Lab, ESO, E. Slawik, N. Risinger, D. De Martin,  D. Lennon, E. Sabbi, N. Bartmann, M. Zamani


Zoom Into the Tarantula Nebula


This video takes the viewer on a journey that zooms through space to reveal the Tarantula Nebula.

Thousands of never-before-seen young stars are spotted in the stellar nursery called 30 Doradus, captured by the NASA/ESA/CSA James Webb Space Telescope. It is nicknamed the Tarantula Nebula for the appearance of its dusty filaments in previous telescope images, the nebula has long been a favourite for astronomers studying star formation. In addition to young stars, Webb reveals distant background galaxies, as well as the detailed structure and composition of the nebula’s gas and dust.

Credit:

NASA, ESA, CSA, STScI, ESO, E. Slawik, N. Risinger, D. De Martin,  D. Lennon, E. Sabbi, N. Bartmann, M. Zamani
Music: tonelabs - Happy Hubble (tonelabs.com)


Two Views of the Tarantula Nebula (NIRCam and MIRI images)



A side-by-side display of the same region of the Tarantula Nebula brings out the distinctions between Webb’s near-infrared (closer to visible red, left) and mid-infrared (further from visible red, right) images. Each portion of the electromagnetic spectrum reveals and conceals different features, making data in different wavelengths valuable to astronomers for understanding the physics taking place.

The image captured by Webb’s Near-Infrared Camera (NIRCam, left) features bright, hot features, like the sparkling cluster of massive young stars, and the bright star to their upper left, featuring Webb’s distinctive diffraction spikes. Young, emerging stars shine blue, while scattered red points indicate stars that are still enshrouded in dust. Structure in the nebula, carved by the stellar winds of the massive young stars, is intricately detailed.

In the view from Webb’s Mid-Infrared Instrument (MIRI), the hot young stars fade, and cooler gas takes the spotlight. Much of the nebula takes on a ghostly appearance in the mid-infrared, because these longer wavelengths of light are able to penetrate the dust clouds and reach Webb. Previously hidden bubbles and dust-embedded stars emerge. A particularly prominent, spherically shaped bubble – being blown out by a newborn star – appears in the MIRI image just to the right of the now-darkened central star cluster.

Credit:

NASA, ESA, CSA, and STScI, N. Bartmann
Music: Stellardrone – Twilight


Pan of the Tarantula Nebula (NIRCam Image)



In this mosaic image stretching 340 light-years across, Webb’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light, including tens of thousands of never-before-seen young stars that were previously shrouded in cosmic dust. The most active region appears to sparkle with massive young stars, appearing pale blue. Scattered among them are still-embedded stars, appearing red, yet to emerge from the dusty cocoon of the nebula. NIRCam is able to detect these dust-enshrouded stars thanks to its unprecedented resolution at near-infrared wavelengths.

Credit:

NASA, ESA, CSA, and STScI, N. Bartmann
Music: Stellardrone – Twilight


Pan of the Tarantula Nebula (MIRI Image)


At the longer wavelengths of light captured by its Mid-Infrared Instrument (MIRI), Webb focuses on the area surrounding the central star cluster and unveils a very different view of the Tarantula Nebula. In this light, the young hot stars of the cluster fade in brilliance, and glowing gas and dust come forward. Abundant hydrocarbons light up the surfaces of the dust clouds, shown in blue and purple. Much of the nebula takes on a more ghostly, diffuse appearance because mid-infrared light is able to show more of what is happening deeper inside the clouds. Still-embedded protostars pop into view within their dusty cocoons, including a bright group at the very top edge of the image, left of centre.

Other areas appear dark, like in the lower-right corner of the image. This indicates the densest areas of dust in the nebula, that even mid-infrared wavelengths cannot penetrate. These could be the sites of future, or current, star formation.

Credit:

NASA, ESA, CSA, and STScI, N. Bartmann
Music: Stellardrone – Twilight


Fuente: ESA/Hubble/Webb Information Centre




Comentarios

Entradas populares de este blog

Las 3 banderas de Chile

FALLECE ROY GARBER, UNO DE LOS PROTAGONISTAS DE LA SERIE “GUERRA DE ENVÍOS” EN A&E

De duelo el Colegio Germania de Puerto Varas : A los 93 años, falleció el Padre Enrique Bohle Werner svd