Un telescopio de ESO capta el mapa infrarrojo más detallado de nuestra Vía Láctea


 Un equipo de astrónomos y astrónomas ha publicado un gigantesco mapa infrarrojo de la Vía Láctea que contiene más de 1.500 millones de objetos, el más detallado jamás realizado. Utilizando el telescopio VISTA del Observatorio Europeo Austral, el equipo monitoreó las regiones centrales de nuestra galaxia durante más de 13 años. Con 500 terabytes de datos, este es el proyecto de observación más grande jamás realizado con un telescopio de ESO.


"Hemos hecho tantos descubrimientos que hemos cambiado la visión de nuestra galaxia para siempre", afirma Dante Minniti, astrónomo de la Universidad Andrés Bello, en Chile, quien ha dirigido el proyecto general.


Este mapa récord comprende 200.000 imágenes tomadas por VISTA (Visible and Infrared Survey Telescope for Astronomy, telescopio de rastreo en los rangos visible e infrarrojo para astronomía de ESO). Ubicado en el Observatorio Paranal de ESO, en Chile, el objetivo principal del telescopio es mapear grandes áreas del cielo. El equipo utilizó la cámara infrarroja VIRCAM, instalada en VISTA, que puede mirar a través del polvo y el gas que impregna nuestra galaxia. Por lo tanto, es capaz de ver la radiación de los lugares más ocultos de la Vía Láctea, abriendo una ventana única a nuestro entorno galáctico.


Este gigantesco conjunto de datos [1] cubre un área del cielo equivalente a 8600 lunas llenas y contiene aproximadamente 10 veces más objetos que un mapa anterior publicado por el mismo equipo en 2012. Incluye estrellas recién nacidas (que a menudo están incrustadas en entornos cargados de polvo) y cúmulos globulares (densos grupos de millones de las estrellas más antiguas de la Vía Láctea). La capacidad de VISTA para observar en el rango infrarrojo implica que este telescopio también puede detectar objetos muy fríos, que brillan en estas longitudes de onda, como enanas marrones (estrellas "fallidas" que no tienen fusión nuclear sostenida) o planetas que flotan libremente y que no orbitan una estrella.


Las observaciones comenzaron en 2010 y finalizaron en el primer semestre de 2023, abarcando un total de 420 noches. Al observar cada parte del cielo muchas veces, el equipo pudo no solo determinar las ubicaciones de estos objetos, sino también rastrear cómo se mueven y si su brillo cambia. Cartografiaron estrellas cuya luminosidad cambia periódicamente y que pueden usarse como reglas cósmicas para medir distancias [2]. Esto nos ha dado una vista precisa en 3D de las regiones internas de la Vía Láctea que antes estaban ocultas por el polvo. El equipo también rastreó estrellas de hipervelocidad, estrellas que se mueven rápidamente y que se catapultaron desde la región central de la Vía Láctea después de un encuentro cercano con el agujero negro supermasivo que acecha allí.


El nuevo mapa contiene datos recopilados como parte del sondeo VISTA Variables in the Vía Láctea (VVV) y su proyecto complementario, el sondeo VVV eXtended (VVVX). "El proyecto fue un esfuerzo monumental, que fue posible porque estábamos rodeados de un gran equipo", declara Roberto Saito, astrónomo de la Universidad Federal de Santa Catarina (Brasil) y autor principal del artículo sobre la finalización del proyecto publicado hoy en Astronomy & Astrophysics.


Los sondeos VVV y VVVX ya han dado lugar a más de 300 artículos científicos. Una vez finalizados los estudios, la exploración científica de los datos recopilados continuará durante las próximas décadas. Mientras tanto, el Observatorio Paranal de ESO se está preparando para el futuro: VISTA se actualizará con su nuevo instrumento 4MOST y el Very Large Telescope (VLT) de ESO recibirá su instrumento MOONS. Juntos, proporcionarán espectros de millones de los objetos estudiados en este trabajo, con innumerables descubrimientos por venir.

Notas


[1] El conjunto de datos es demasiado grande para publicarlo como una sola imagen, pero se puede acceder a los datos procesados y al catálogo de objetos en el Portal Científico de ESO.


[2] Una forma de medir la distancia a una estrella es comparando lo brillante que parece vista desde la Tierra con lo intrínsecamente brillante que es, pero a menudo no tenemos este último dato. Ciertos tipos de estrellas cambian su brillo periódicamente, y existe una conexión muy fuerte entre la rapidez con la que lo hacen y lo intrínsecamente luminosas que son. La medición de estas fluctuaciones permite a los astrónomos determinar qué tan luminosas son estas estrellas y, por lo tanto, a qué distancia se encuentran.

Información adicional


Este trabajo de investigación se ha presentado en un artículo titulado "The VISTA Variables in the Vía Láctea eXtended (VVVX) ESO public survey: Completion of the observations and legacy", publicado en Astronomy & Astrophysics (https://doi.org/10.1051/0004-6361/202450584). DOI de los datos: VVV, VVVX.


El equipo está compuesto por: R. K. Saito (Departamento de Física, Universidad Federal de Santa Catarina, Florianópolis, Brasil [UFSC]): M. Hempel (Instituto de Astrofísica, Dep. de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Providencia, Chile [ASTROUNAB] y Instituto Max Planck de Astronomía, Heidelberg, Alemania); J. Alonso-García (Centro de Astronomía, Universidad de Antofagasta, Antofagasta, Chile [CITEVA] e Instituto de Astrofísica Millennium, Providencia, Chile [MAS]); P. W. Lucas (Centro para la Investigación en Astrofísica, Universidad de Hertfordshire, Hatfield, Reino Unido [CAR]); D. Minniti (ASTROUNAB; Observatorio del Vaticano, Ciudad del Vaticano, Estado de la Ciudad del Vaticano [VO] y UFSC); S. Alonso (Departamento de Geofísica y Astronomía, CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Rivadavia, Argentina [UNSJ-CONICET]); L. Baravalle (Instituto de Astronomía Teórica y Experimental, Córdoba, Argentina [IATE-CONICET]; Observatorio Astronómico de Córdoba, Universidad Nacional de Córdoba, Argentina [OAC]); J. Borissova (Instituto de Física y Astronomía, Universidad de Valparaíso, Valparaíso, Chile [IFA-UV] y MAS); C. Caceres (ASTROUNAB); A. N. Chené (Observatorio Gemini, Centro de Operaciones del Norte, Hilo, EE.UU.); N. J. G. Cross (Unidad de Astronomía de Amplio Campo, Instituto de Astronomía, Universidad de Edimburgo, Real Observatorio, Edimburgo, Reino Unido); F. Duplancic (UNSJ-CONICET); E. R. Garro (Observatorio Europeo Austral, Vitacura, Chile [ESO Chile]); M. Gómez (ASTROUNAB); V. D. Ivanov (Observatorio Europeo Austral, Garching (cerca de Múnich) [ESO Germany]); R. Kurtev (IFA-UV y MAS); A. Luna (INAF – Observatorio Astronómico de Capodimonte, Napoles, Italia [INAF- OACN]); D. Majaess (Universidad de Monte San Vicente, Halifax, Canadá); M. G. Navarro (INAF – Observatorio Astronómico de Roma, Italia [INAF-OAR]); J. B. Pullen (ASTROUNAB); M. Rejkuba (ESO Germany); J. L. Sanders (Departamento de Física y Astronomía, University College de Londres, Londres, Reino Unido); L. C. Smith (Instituto de Astronomía, Universidad de Cambridge, Cambridge, Reino Unido); P. H. C. Albino (UFSC); M. V. Alonso (IATE-CONICET y OAC); E. B. Amôres (Departamento de Física, Universidad Estatal de Feira de Santana, Feira de Santana, Brasil); E. B. R. Angeloni (Observatorio Gemini/NOIRLab de NSF -National Science Foundation, Fundación Nacional de Ciencia-, La Serena, Chile [NOIRLab]); J. I. Arias (Departamento de Astronomía, Universidad de La Serena, La Serena, Chile [ULS]); M. Arnaboldi (ESO Germany); B. Barbuy (Universidad de Sao Paulo, Sao Paulo, Brasil); A. Bayo (ESO Germany); J. C. Beamin (ASTROUNAB y Fundación Chilena de Astronomía, Santiago, Chile); L. R. Bedin (Instituto Nacional de Astrofísica, Observatorio Astronómico de Padua, Padua, Italia [INAF-OAPd]); A. Bellini (Instituto de Ciencia del Telescopio Espacial, Baltimore, EE.UU. [STScI]); R. A. Benjamin (Departamento de Física, Universidad de Wisconsin-Whitewater, Whitewater, EE.UU.); E. Bica (Departamento de Astronomía, Instituto de Física, Porto Alegre, Brasil [IF – UFRGS]); C. J. Bonatto (IF – UFRGS); E. Botan (Instituto de Ciencias Naturales, Humanas y Sociales, Universidad Federal de Mato Grosso, Sinop, Brasil); V. F. Braga (INAF-OAR); D. A. Brown (Observatorio del Vaticano, Tucson, EE.UU.); J. B. Cabral (IATE-CONICET y Gerencia De Vinculación Tecnológica, Comisión Nacional de Actividades Espaciales, Córdoba, Argentina); D. Camargo (Colegio Militar de Porto Alegre, Ministerio da Defensa, Ejército Brasileño, Brasil); A. Caratti o Garatti (INAF- OACN); J. A. Carballo-Bello (Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile [IAI-UTA]); M. Catelan (Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile [Instituto de Astrofísica UC]; MAS y Centro de Astro-Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile [AIUC]); C. Chavero (OAC y Consejo Nacional de Investigaciones Científica y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina [CONICET]); M. A. Chijani (ASTROUNAB); J. J. Clariá (OAC y CONICET); G. V. Coldwell (UNSJ-CONICET); C. Contreras Peña (Departamento de Física y Astronomía, Universidad Nacional de Seúl, Seúl, República de Corea e Instituto de Investigación en Ciencias Básicas, Universidad Nacional de Seúl, Seúl, República de Corea); C. R. Contreras Ramos (Instituto de Astrofísica UC y MAS); J. M. Corral-Santana (ESO Chile); C. C. Cortés (Departamento de Tecnologías Industriales, Facultad de Ingeniería, Universidad de Talca, Curicó, Chile); M. Cortés-Contreras (Departamento de Física de la Tierra y Astrofísica & Instituto de Física de Partículas y del Cosmos de la UCM, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, España); P. Cruz (Centro de Astrobiología, CSIC-INTA, Madrid, España [CAB]); I. V. Daza-Perilla (CONICET; IATE-CONICET y Facultad de Matemáticas, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina); V. P. Debattista (Universidad de Lancashire Central, Preston, Reino Unido); B. Dias (ASTROUNAB); L. Donoso (Instituto de Ciencias Astronómicas, de la Tierra y del Espacio, San Juan, Argentina); R. D’Souza (VO); J. P. Emerson (Unidad de Astronomía, Escuela de Ciencias Físicas y Químicas, Universidad Queen Mary de Londres, Londres, Reino Unido); S. Federle (ESO Chile y ASTROUNAB); V. Fermiano (UFSC); J. Fernández (UNSJ-CONICET); J. G. Fernández-Trincado (Instituto de Astronomía, Universidad Católica del Norte, Antofagasta, Chile [IA-UCN]); T. Ferreira (Departamento de Astronomía, Universidad de Yale, New Haven, EE.UU.); C. E. Ferreira Lopes (Instituto de Astronomía y Ciencias Planetarias, Universidad de Atacama, Copiapó, Chile [INCT] y MAS); V. Firpo (NOIRLab); C. Flores-Quintana (ASTROUNAB y MAS); L. Fraga (Laboratorio Nacional de Astrofísica, Itajubá, Brasil); D.Froebrich (Centro de Astroísica y Ciencias Planetarias, Escuela de Física y Astronomía, Universidad de Kent, Canterbury, Reino Unido); D. Galdeano (UNSJ-CONICET); I. Gavignaud (ASTROUNAB); D. Geisler (Departamento de Astronomía, Universidad de Concepción, Chile [UdeC]; Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, Chile [IMIP-ULS] y ULS); O. E.Gerhard (Instituto Max Planck de Física Extraterrestre, Alemania [MPE]); W. Gieren (UdeC); O. A. Gonzalez (Centro de Tecnología en Astronomía del Reino Unido, Real Observatorio de Edimburgo, Edimburgo, Reino Unido); L. V. Gramajo (OAC y CONICET); F. Gran (Universidad de la Costa Azul, Observatorio de la Costa Azul, CNRS, Laboratorio Lagrange, Niza, Francia [Lagrange]); P. M. Granitto (Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina); M. Griggio (INAF-OAPd; Departamento de Física, Universidad de Ferrara, Ferrara, Italia, y STScI); Z. Guo (IFA-UV y MAS); S. Gurovich (IATE-CONICET y Universidad del Oeste de Sídney, Kingswood, Australia); M. Hilker (ESO Germany); H. R. A. Jones (CAR); R. Kammers (UFSC); M. A. Kuhn (CAR); M. S. N. Kumar (Centro de Astrofísica de la Universidad de Oporto, Oporto, Portugal); R. Kundu (Miranda House, Universidad de Delhi, India y Centro Interuniversitario de Astronomía y Astrofísica, Pune, India); M. Lares (IATE-CONICET); M. Libralato (INAF-OAPd); E. Lima (Universidad Federal de Pampa, Uruguaiana, Brasil); T. J. Maccarone (Departamento de Física & Astronomía, Universidad Tecnológica de Texas, Lubbock, EE.UU.); P. Marchant Cortés (ULS); E. L. Martin (Instituto de Astrofísica de Canarias y Departamento de Astrofísica, Universidad de La Laguna, San Cristóbal de la Laguna, España); N. Masetti (Instituto Nacional de Astrofísica, Observatorio de Astrofísica y Ciencias del Espacio de Bolonia, Bolonia, Italia y ASTROUNAB); N. Matsunaga (Departamento de Astronomía, Escuela de Posgrado de Ciencias, Universidad de Tokio, Japón); F. Mauro (IA-UCN); I. McDonald (Centro Jodrell Bank de Astrofísica, Universidad de Manchester, Reino Unido [JBCA]); A. Mejías (Departamento de Astronomía, Universidad de Chile, Las Condes, Chile); V. Mesa (IMIP-ULS; Asociación de Universidades de Investigación en Astronomía, Chile, Grupo de Astrofísica Extragaláctica-IANIGLA; CONICET, y Universidad Nacional de Cuyo, Mendoza, Argentina); F. P. Milla-Castro (ULS); J. H. Minniti (Departamento de Física y Astronomía, Universidad Johns Hopkins, Baltimore, EE.UU.); C. Moni Bidin (IA-UCN); K. Montenegro (Clínica Universidad de los Andes, Santiago, Chile); C. Morris (CAR); V. Motta (OAC); F. Navarete (Telescopio SOAR/NOIRLab de NSF, La Serena, Chile); C. Navarro Molina (Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Puerto Montt, Chile); F. Nikzat (Instituto de Astrofísica UC y MAS); J. L. NiloCastellón (IMIP-ULS y ULS); C. Obasi (IA-UCN y Centro Para Ciencias Básicas del Espacio, Universidad de Nigeria, Nsukka, Nigeria); M. Ortigoza-Urdaneta (Departamento de Matemática, Universidad de Atacama, Copiapó, Chile); T. Palma (OAC); C. Parisi (OAC e IATE-CONICET); K. Pena Ramírez (NOIRLab de NSF/Observatorio Vera C. Rubin, La Serena, Chile); L. Pereyra (IATE-CONICET); N. Pérez (UNSJ-CONICET); I. Petralia (ASTROUNAB); A. Pichel (Instituto de Astronomía y Física del Espacio, Ciudad Autónoma de Buenos Aires, Argentina [IAFE-CONICET]); G. Pignata (IAI-UTA); S. Ramírez Alegría (CITEVA); A. F. Rojas (Instituto de Astrofísica UC, Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Santiago, Chile y CITEVA); D. Rojas (ASTROUNAB); A. Roman-Lopes (ULS); A. C. Rovero (IAFE-CONICET); S. Saroon (ASTROUNAB); E. O. Schmidt (OAC e IATE-CONICET); A. C. Schröder (MPE); M. Schultheis (Lagrange); M. A. Sgró (OAC); E. Solano (CAB); M. Soto (INCT); B. Stecklum (Observatorio Estatal de Thüringer, Tautenburg, Alemania); D. Steeghs (Departamento de Física, Universidad de Warwick, Reino Unido); M. Tamura (Departamento de Astronomía, Escuela de Posgrado de Ciencias, Universidad de Tokio; Centro de Astrobiología, Tokio, Japón, y Observatorio Astronómico Nacional de Japón, Tokio, Japón); P. Tissera (Instituto de Astrofísica UC y AIUC), A. A. R. Valcarce (Departamento de Física, Universidad de Tarapacá, Chile); C. A. Valotto (IATE-CONICET y OAC); S. Vasquez (Museo Interactivo de la Astronomía, La Granja, Chile); C. Villalon (IATE-CONICET y OAC); S. Villanova (UdeC); F. Vivanco Cádiz (ASTROUNAB); R. Zelada Bacigalupo (North Optics, La Serena, Chile); A. Zijlstra (JBCA y Escuela de Ciencias Matemáticas y Físicas, Universidad Macquarie, Sídney, Australia); y M. Zoccali (Instituto de Astrofísica UC y MAS).


Lo más destacado del mapa infrarrojo más detallado de la Vía Láctea



Este collage destaca una pequeña selección de regiones de la Vía Láctea fotografiadas como parte del mapa infrarrojo más detallado de nuestra galaxia. Se trata de, de izquierda a derecha y de arriba a abajo: NGC 3576, NGC 6357, Messier 17, NGC 6188, Messier 22 y NGC 3603. Todas ellas son nubes de gas y polvo donde se están formando estrellas, excepto Messier 22, que es un grupo muy denso de estrellas viejas.

Las imágenes fueron captadas con el telescopio VISTA (Visible and Infrared Survey Telescope for Astronomy , telescopio de sondeo para astronomía en los rangos visible e infrarrojo) de ESO y su cámara infrarroja VIRCAM. El gigantesco mapa al que pertenecen estas imágenes contiene 1.500 millones de objetos. Los datos se recopilaron a lo largo de 13 años como parte del sondeo VISTA Variables in the Vía Láctea (VVV) y su proyecto complementario, el sondeo VVV eXtended (VVVX).

Crédito:

ESO/VVVX survey


Vista infrarroja de la nebulosa Messier 17


Esta imagen muestra una vista infrarroja detallada de Messier 17, también conocida como la nebulosa Omega o la nebulosa del Cisne, una guardería estelar ubicada a unos 5500 años luz de distancia en la constelación de Sagitario. Esta imagen es parte de un mapa infrarrojo récord de la Vía Láctea que contiene más de 1.500 millones de objetos. El telescopio VISTA (Visible and Infrared Survey Telescope for Astronomy , telescopio de sondeo para astronomía en los rangos visible e infrarrojo) de ESO, captó las imágenes con su cámara infrarroja VIRCAM. Los datos se recopilaron a lo largo de 13 años como parte del sondeo VISTA Variables in the Vía Láctea (VVV) y su proyecto complementario, el sondeo VVV eXtended (VVVX).

Crédito:

ESO/VVVX survey

Una vista infrarroja de la nebulosa NGC 6188 y el cúmulo NGC 6193




Esta es una imagen infrarroja de NGC 6188, también conocida como la nebulosa del Pájaro de Fuego, ubicada a unos 4100 años luz de distancia en la constelación de Ara. Esta nube de gas alberga un cúmulo de estrellas jóvenes llamado NGC 6193. La imagen fue captada por el telescopio VISTA (Visible and Infrared Survey Telescope for Astronomy , telescopio de sondeo para astronomía en los rangos visible e infrarrojo) de ESO con su cámara infrarroja VIRCAM. La imagen es parte de un mapa infrarrojo gigante de la Vía Láctea que contiene más de 1.500 millones de objetos. Los datos se recopilaron a lo largo de 13 años como parte del sondeo VISTA Variables in the Vía Láctea (VVV) y su proyecto complementario, el sondeo VVV eXtended (VVVX).

Crédito:

ESO/VVVX survey


Una vista infrarroja del cúmulo globular Messier 22



Aquí vemos una vista infrarroja del cúmulo globular Messier 22, un grupo densamente agrupado de estrellas muy viejas situado a unos 10.000 años luz de distancia, en la constelación de Sagitario. La imagen fue captada por el telescopio VISTA (Visible and Infrared Survey Telescope for Astronomy , telescopio de sondeo para astronomía en los rangos visible e infrarrojo) de ESO con su cámara infrarroja VIRCAM. Forma parte de un mapa infrarrojo récord de la Vía Láctea que contiene más de 1.500 millones de objetos. Los datos se recopilaron a lo largo de 13 años como parte del sondeo VISTA Variables in the Vía Láctea (VVV) y su proyecto complementario, el sondeo VVV eXtended (VVVX).

Crédito:

ESO/VVVX survey

El telescopio VISTA de ESO nos muestra la Nebulosa de la Langosta

Esta imagen del telescopio VISTA de ESO capta el vasto paisaje celeste de nubes de gas resplandecientes y bucles de polvo rodeando a estrellas jóvenes calientes. Esta imagen infrarroja nos revela una nueva visión de la guardería estelar conocida como NGC 6357. Fue obtenida como parte del sondeo VVV (VISTA Variables in the Vía Láctea), que actualmente explora la Vía Láctea con el fin de conocer la estructura de nuestra galaxia y explicar cómo se formó.


Crédito:


ESO/VVV Survey/D. Minniti. Acknowledgement: Ignacio Toledo

 Los nacimientos estelares desde los ojos de VISTA



Esta imagen de la semana muestra una nueva estampa de NGC 3603 (izquierda) y NGC 3576 (derecha), dos impresionantes nebulosas fotografiadas con el telescopio VISTA (Visible and Infrared Survey Telescope for Astronomy, telescopio de sondeo para astronomía en los rangos visible e infrarrojo) de ESO. Esta imagen infrarroja bucea a través del polvo de estas nebulosas, revelando detalles ocultos en imágenes ópticas.

NGC 3603 y NGC 3576 están a 22.000 y 9.000 años luz de nosotros, respectivamente. Dentro de estas extensas nubes de polvo y gas, nacen nuevas estrellas, cambiando gradualmente las formas de las nebulosas a través de una intensa radiación y potentes vientos generados por partículas cargadas. Dada su proximidad, la comunidad astronómica tiene la oportunidad de estudiar el intenso proceso de formación de estrellas, algo que ocurre en otras galaxias pero que es más difícil de observar debido a las grandes distancias.

Las dos nebulosas fueron catalogadas por John Frederick William Herschel en 1834 durante un viaje a Sudáfrica, donde quiso recopilar estrellas, nebulosas y otros objetos del cielo del hemisferio sur. Este catálogo fue ampliado en 1888 por John Louis Emil Dreyer en el Nuevo Catálogo General, de ahí el identificador NGC (por las siglas en inglés) en estos y otros objetos astronómicos.

Crédito:

ESO/VVVX survey

Área de la Vía Láctea cartografiada por los sondeos VVV y VVVX



Esta imagen muestra las regiones de la Vía Láctea cartografiadas por el sondeo VVV (VISTA Variables in the Vía Láctea) y su proyecto complementario, el sondeo VVVX (VVV eXtended). El área total cubierta es equivalente a 8600 lunas llenas.

La Vía Láctea está formada por una protuberancia central (un abultado, denso y brillante conglomerado de estrellas) y un disco plano a su alrededor. Los cuadrados rojos marcan las áreas centrales de nuestra galaxia originalmente cubiertas por VVV y luego reobservadas por VVVX: la mayor parte de la protuberancia y parte del disco a uno de los lados.

Los otros cuadrados indican regiones observadas solo como parte del sondeo VVVX ampliado: incluso más regiones del disco a ambos lados (amarillo y verde), áreas del disco por encima y por debajo del plano de la galaxia (azul oscuro) y por encima y por debajo de la protuberancia (azul claro).

Los números indican la longitud y latitud galácticas, utilizados por la comunidad astronómica  para cartografiar los objetos de nuestra galaxia. También se muestran los nombres de varias constelaciones.

Crédito:

ESO/VVVX survey



VIDEOS

Comparaciones de la imagen de NGC 6357 obtenida por VISTA con una imagen visible del VLT


Esta secuencia de vídeo compara las imágenes visble e infrarroja de la Nebulosa de la Langosta (NGC 6357). La imagen visible fue creada con imágenes del Digitized Sky Survey 2. La nueva imagen infrarroja fue obtenida con el telescopio VISTA en la misma ubicación. En el infrarrojo, el polvo que oscurece muchas estrellas se hace casi transparente, revelando todo un anfitrión de nuevas estrellas que, de otro modo, resultan invisibles.

Crédito:

ESO/VVV Survey/Digitized Sky Survey 2/D. Minniti. Acknowledgement: Ignacio Toledo. Music: movetwo

Fuente: Observatorio Europeo Austral 

Comentarios

Entradas populares de este blog

En Semana Santa se movilizaron cerca de 5 mil toneladas de recursos y productos pesqueros en el país

Las 3 banderas de Chile

FALLECE ROY GARBER, UNO DE LOS PROTAGONISTAS DE LA SERIE “GUERRA DE ENVÍOS” EN A&E